Geophysical Consequences of Tropospheric Particulate Heating: Further Evidence that Anthropogenic Global Warming is Principally Caused by Particulate Pollution

Main Article Content

J. Marvin Herndon
Mark Whiteside


The climate science community and the United Nations’ Intergovernmental Panel on Climate Change have misinformed world governments by failing to acknowledge tropospheric particulate geoengineering that has been ongoing with ever-increasing duration and intensity for decades, and by treating global warming solely as a radiation-balance issue, which has resulted in a seriously incomplete understanding of the fundamental factors that affect Earth’s surface temperature. Here we review the consequences of tropospheric particulate heating by absorption of short- and long-wave solar radiation and long-wave radiation from Earth’s surface. Generally, black carbon absorbs light over the entire solar spectrum; brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light; iron oxides are good absorbers, the most efficient being magnetite. Pyrogenic coal fly ash, both from coal burning and from tropospheric jet-spraying geoengineering (for military purposes and/or climate engineering), contains carbon and iron oxides, hematite and magnetite. The recently published climate-science paradigm shift discloses that the main cause of global warming is not carbon dioxide heat retention, but particulate pollution that absorbs radiation, heats the troposphere, and reduces the efficiency of atmospheric-convective heat removal from Earth’s surface. In addition to the World War II data, three other independent lines of supporting evidence are reviewed: (1) Passage overhead of the Mt. St. Helens volcanic plume; (2) Radiosonde and aethalometer investigations of Talukdar et al.; and, (3) convection suppression over the tropical North Atlantic caused by the Saharan-blown dust. The risks associated with the placement of aerosol particulates into the stratosphere, whether lofted naturally, inadvertently, or deliberately as proposed for solar radiation management, poses grave risks, including the destruction of atmospheric ozone. To solve global warming humanity must: (1) Abruptly halt tropospheric particulate geoengineering; (2) Trap particulate emissions from coal-fired industrial furnaces (especially in India and China) and from vehicle exhaust; and, (3) Reduce particulate-forming fuel additives.

Aerosol particulate heating, aerosol particulates, geoengineering, climate change, atmospheric convection, coal fly ash, particulate pollution, global warming.

Article Details

How to Cite
Herndon, J. M., & Whiteside, M. (2019). Geophysical Consequences of Tropospheric Particulate Heating: Further Evidence that Anthropogenic Global Warming is Principally Caused by Particulate Pollution. Journal of Geography, Environment and Earth Science International, 22(4), 1-23.
Review Article


Herndon JM. Science misrepresentation and the climate-science cartel. J Geog Environ Earth Sci Intn. 2018;18(2):1-13.

Herndon JM. Inseparability of science history and discovery. Hist Geo Space Sci. 2010;1:25-41.

Herndon JM. Some reflections on science and discovery. Curr Sci. 2015;108(11): 1967-8.

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, and New York. 2013; 1535.

Herndon JM. An open letter to members of AGU, EGU, and IPCC alleging promotion of fake science at the expense of human and environmental health and comments on AGU draft geoengineering position statement. New Concepts in Global Tectonics Journal. 2017;5(3):413-6.

Shearer C, West M, Caldeira K, Davis SJ. Quantifying expert consensus against the existence of a secret large-scale atmospheric spraying program. Environ Res Lett. 2016;11(8):p. 084011.
(Accessed July 27, 2019)

Wigington D. Geoengineering a Chronicle of Indictment; 2017.
(Accessed July 27, 2019)

Herndon JM. Adverse agricultural consequences of weather modification. AGRIVITA Journal of Agricultural Science. 2016;38(3):213-21.

Herndon JM, Whiteside M. California wildfires: Role of undisclosed atmospheric manipulation and geoengineering. J Geog Environ Earth Sci Intn. 2018;17(3):1-18.

Herndon JM, Whiteside M. Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health. J Geog Environ Earth Sci Intn. 2017;9(1):1-8.

Herndon JM, Whiteside M. Contamination of the biosphere with mercury: Another potential consequence of on-going climate manipulation using aerosolized coal fly ash J Geog Environ Earth Sci Intn. 2017;13(1): 1-11.

Abdussamatov HI. The sun defines the climate. Russian Journal "Nauka i Zhizn" ("Science and Life"). 2008;1:34-42.

Abdussamatov HI. Grand minimum of the total solar irradiance leads to the little ice age. Geol Geosci. 2013;2(2):1-10.

Herndon JM. Geodynamic basis of heat transport in the earth. Curr Sci. 2011; 101(11):1440-50.

Herndon JM. Terracentric nuclear fission georeactor: background, basis, feasibility, structure, evidence and geophysical implications. Curr Sci. 2014;106(4):528-41.

Mjelde R, Faleide JI. Variation of Icelandic and Hawaiian magmatism: Evidence for co-pulsation of mantle plumes? Mar Geophys Res. 2009;30:61-72.

Mjelde R, Wessel P, Müller D. Global pulsations of intraplate magmatism through the Cenozoic. Lithosphere. 2010;2(5):361-76.

Herndon JM. Solar System processes underlying planetary formation, geod-ynamics, and the georeactor. Earth, Moon, and Planets. 2006;99(1):53-99.

Herndon JM. Energy for geodynamics: Mantle decompression thermal tsunami. Curr Sci. 2006;90(12):1605-6.

Herndon JM. New indivisible planetary science paradigm. Curr Sci. 2013;105(4): 450-60.

Herndon JM. NASA: Politics above Science:; 2018.

Herndon JM. Corruption of Science in America. The Dot Connector; 2011.

Phalgune A, Kissinger C, Burnett M, Cook C, Beckwith L, Ruthruff JR, editors. Garbage in, garbage out? An empirical look at oracle mistakes by end-user programmers. Visual Languages and Human-Centric Computing, 2005 IEEE Symposium on: IEEE; 2005.

Lovelock J. The Vanishing Face of Gaia: A Final Warning London: Allen Lane/ Penguine; 2009.
(Accessed July 27, 2019)

Andreae MO, Jones CD, Cox PM. Strong present-day aerosol cooling implies a hot future. Nature. 2005;435(7046):1187.

Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, et al. Anthro-pogenic and natural radiative forcing. Climate Change. 2013;423:658-740.

Curry JA, Webster PJ. Climate science and the uncertainty monster. Bulletin of the American Meteorological Society. 2011; 92(12):1667-82.

Letcher TM. Why do we have global warming? Managing Global Warming: Elsevier. 2019;3-15.

Summerhayes CP, Zalasiewicz J. Global warming and the Anthropocene. Geology Today. 2018;34(5):194-200.

Ångström A. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler. 1929; 11(2):156-66.

Robock A. Enhancement of surface cooling due to forest fire smoke. Science. 1988;911-3.

Robock A. Surface cooling due to forest fire smoke. Journal of Geophysical Research: Atmospheres. 1991;96(D11): 20869-78.

McCormick RA, Ludwig JH. Climate modification by atmospheric aerosols. Science. 1967;156(3780):1358-9.

Andreae MO, Gelencsér A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics. 2006; 6(10):3131-48.

Wang C, Jeong GR, Mahowald N. Particulate absorption of solar radiation: anthropogenic aerosols vs. dust. Atmos-pheric Chemistry and Physics. 2009;9(12): 3935-45.

Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nature geoscience. 2008;1(4):221.

Fan J, Rosenfeld D, Ding Y, Leung LR, Li Z. Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geo-physical Research Letters. 2012;39(9).

Anderson TL, Charlson RJ, Schwartz SE, Knutti R, Boucher O, Rodhe H, et al. Climate forcing by aerosols-A hazy picture. Science. 2003;300(5622):1103-4.

Herndon JM. Air pollution, not greenhouse gases: The principal cause of global warming. J Geog Environ Earth Sci Intn. 2018;17(2):1-8.

Herndon JM. Fundamental climate science error: Concomitant harm to humanity and the environment J Geog Environ Earth Sci Intn. 2018;18(3):1-12.

Herndon JM. Role of atmospheric convection in global warming. J Geog Environ Earth Sci Intn. 2019;19(4):1-8.

Herndon JM, Whiteside M. Further evidence that particulate pollution is the principal cause of global warming: Humanitarian considerations. Journal of Geography, Environment and Earth Science International. 2019;21(1):1-11.

Fan J, Wang Y, Rosenfeld D, Liu X. Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. Journal of the Atmospheric Sciences. 2016;73(11):4221-52.

Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition. 2005;44(46):7520- 40.

Ito A. Atmospheric processing of combustion aerosols as a source of bioavailable iron. Environmental Science & Technology Letters. 2015;2(3):70-5.

Ito A, Myriokefalitakis S, Kanakidou M, Mahowald NM, Scanza RA, Hamilton DS, et al. Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances. 2019;5(5):eaau7671.

Matsui H, Mahowald NM, Moteki N, Hamilton DS, Ohata S, Yoshida A, et al. Anthropogenic combustion iron as a complex climate forcer. Nature communi-cations. 2018;9(1):1593.

Moteki N, Adachi K, Ohata S, Yoshida A, Harigaya T, Koike M, et al. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nature Communications. 2017;8: 15329.

Herndon JM. Aluminum poisoning of humanity and Earth's biota by clandestine geoengineering activity: Implications for India. Curr Sci. 2015;108(12):2173-7.

Herndon JM. Obtaining evidence of coal fly ash content in weather modification (geoengineering) through analyses of post-aerosol spraying rainwater and solid substances. Ind J Sci Res and Tech. 2016; 4(1):30-6.

Herndon JM, Whiteside M, Baldwin I. Fifty years after “how to wreck the environment”: Anthropogenic extinction of life on earth. J Geog Environ Earth Sci Intn. 2018;16(3):1-15.

Poet S, Moore H, Martell E. Lead 210, bismuth 210, and polonium 210 in the atmosphere: Accurate ratio measurement and application to aerosol residence time determination. Journal of Geophysical Research. 1972;77(33):6515-27.

Baskaran M, Shaw GE. Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. Journal of Aerosol Science. 2001;32(4):443-52.

Quinn P, Bates T, Baum E, Doubleday N, Fiore A, Flanner M, et al. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics. 2008; 8(6):1723-35.

Ogren J, Charlson R. Elemental carbon in the atmosphere: cycle and lifetime. Tellus B. 1983;35(4):241-54.

Kokaly R, Clark R, Swayze G, Livo K, Hoefen T, Pearson N, et al. USGS Spectral Library Version 7 Data: US Geological Survey data release; 2017.

Koch D, Del Genio A. Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmospheric Chemistry and Physics. 2010;10(16):7685-96.

Yang M, Howell S, Zhuang J, Huebert B. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–Interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics. 2009;9(6):2035-50.

Lyamani H, Olmo F, Alados-Arboledas L. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmos-pheric Environment. 2008;42(11):2630-42.

Pollack JB, Cuzzi JN. Scattering by nonspherical particles of size comparable to a wavelength: A new semi-empirical theory and its application to tropospheric aerosols. Journal of the Atmospheric Sciences. 1980;37(4):868-81.

Volten H, Munoz O, Rol E, De Haan J, Vassen W, Hovenier J, et al. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. Journal of Geophysical Research: Atmospheres. 2001;106(D15):17375-401.

Schwarz J, Gao R, Fahey D, Thomson D, Watts L, Wilson J, et al. Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research: Atmospheres. 2006;111(D16).

Carlson TN, Benjamin SG. Radiative heating rates for Saharan dust. Journal of the Atmospheric Sciences. 1980;37(1): 193-213.

Scortichini M, De Sario M, de’Donato F, Davoli M, Michelozzi P, Stafoggia M. Short-Term Effects of Heat on Mortality and Effect Modification by Air Pollution in 25 Italian Cities. International Journal of Environmental Research and Public Health. 2018;15(8):1771.

Jacobson MZ. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Journal of Geophysical Research: Atmospheres. 2014;119(14):8980-9002.

Ito A, Lin G, Penner JE. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Scientific Reports. 2018; 8(1):7347.

Olson MR, Victoria Garcia M, Robinson MA, Van Rooy P, Dietenberger MA, Bergin M, et al. Investigation of black and brown carbon multiple‐wavelength‐dependent light absorption from biomass and fossil fuel combustion source emissions. Journal of Geophysical Research: Atmospheres. 2015;120(13):6682-97.

Oeste FD, Richter Rd, Ming T, Caillol S. Climate engineering by mimicking natural dust climate control: The iron salt aerosol method. Earth System Dynamics. 2017; 8(1):1-54.

Liu L, Zhang J, Xu L, Yuan Q, Huang D, Chen J, et al. Cloud scavenging of anthropogenic refractory particles at a mountain site in North China. Atmospheric Chemistry and Physics. 2018;18(19): 14681-93.

Hunt AJ. Small particle heat exchangers. University of California, Berkeley Report No. LBL-7841; 1978.

Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophysical Research Letters. 2005; 32(14).

Rosenfeld D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophysical Research Letters. 1999;26(20):3105-8.

Givati A, Rosenfeld D. Quantifying precipitation suppression due to air pollution. Journal of Applied Meteorology. 2004;43(7):1038-56.

Guo C, Xiao H, Yang H, Wen W. Effects of Anthropogenic Aerosols on a Heavy Rainstorm in Beijing. Atmosphere. 2019; 10(4):162.

Tao WK, Chen JP, Li Z, Wang C, Zhang C. Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics. 2012;50(2).

Ramana M, Ramanathan V, Kim D, Roberts G, Corrigan C. Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteoro-logy and Physical Oceanography. 2007; 133(629):1913-31.

Shamjad P, Tripathi S, Thamban NM, Vreeland H. Refractive index and absorption attribution of highly absorbing brown carbon aerosols from an urban Indian City-Kanpur. Scientific Reports. 2016;6:37735.

Chakrabarty RK, Heinson WR. Scaling Laws for Light Absorption Enhancement Due to Nonrefractory Coating of Atmos-pheric Black Carbon Aerosol. Physical review letters. 2018;121(21): 218701.

Derimian Y, Karnieli A, Kaufman Y, Andreae M, Andreae T, Dubovik O, et al. The role of iron and black carbon in aerosol light absorption. Atmospheric Chemistry and Physics. 2008;8(13):3623-37.

Alfaro S, Lafon S, Rajot J, Formenti P, Gaudichet A, Maille M. Iron oxides and light absorption by pure desert dust: An experimental study. Journal of Geo-physical Research: Atmospheres. 2004; 109(D8).

Liu D, Taylor JW, Crosier J, Marsden N, Bower KN, Lloyd G, et al. Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D. Atmospheric Chemistry and Physics. 2018; 18(5):3817-38.

Dunion JP, Velden CS. The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bulletin of the American Meteorological Society. 2004;85(3):353-66.

Prospero JM, Carlson TN. Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. Journal of Geophysical Research. 1972; 77(27):5255-65.

Yoshida A, Ohata S, Moteki N, Adachi K, Mori T, Koike M, et al. Abundance and emission flux of the anthropogenic iron oxide aerosols from the East Asian continental outflow. Journal of Geophysical Research: Atmospheres; 2018.

Silva L, Moreno T, Querol X. An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment. 2009;407(17): 4972-4.

McCarthy M, Tittle P, Dhir R. Characterization of conditioned pulverized fuel ash for use as a cement component in concrete. Magazine of Concrete Research. 1999;51(3):191-206.

Styszko-Grochowiak K, Gołaś J, Jankowski H, Koziński S. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measure-ment of unburned carbon content. Fuel. 2004;83(13):1847-53.

Fan M, Brown RC. Comparison of the loss-on-ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash. Energy & Fuels. 2001;15(6): 1414-7.

Zhang Y, Forrister H, Liu J, Dibb J, Anderson B, Schwarz JP, et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience. 2017;10(7):486.

Bahadur R, Praveen PS, Xu Y, Ramanathan V. Solar absorption by elemental and brown carbon determined from spectral observations. Proceedings of the National Academy of Sciences. 2012; 109(43):17366-71.

Gleason KE, McConnell JR, Arienzo MM, Chellman N, Calvin WM. Four-fold increase in solar forcing on snow in western US burned forests since 1999. Nature communications. 2019;10(1): 2026.

Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere. 2015;6(8):1-55.

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management. 2010;259(4): 660-84.

Pace G, Meloni D, Di Sarra A. Forest fire aerosol over the Mediterranean basin during summer 2003. Journal of Geophysical Research: Atmospheres. 2005;110(D21).

Li F, Lawrence DM, Bond-Lamberty B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environmental Research Letters. 2017;12(4):044014.

Gluskoter HJ. Trace elements in coal: occurrence and distribution. Illinois State Geological Survey Circular no 499; 1977.

Berkowitz N. An introduction to coal technology: Elsevier; 2012.

Chen Y, Shah N, Huggins F, Huffman G, Dozier A. Characterization of ultrafine coal fly ash particles by energy filtered TEM. Journal of Microscopy. 2005;217(3):225-34.

Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto J, Charlet L. Mineral sequestration of CO 2 by aqueous carbonation of coal combustion fly-ash. Journal of Hazardous Materials. 2009; 161(2):1347-54.

Zhuang Y, Kim YJ, Lee TG, Biswas P. Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. Journal of Electrostatics. 2000;48(3):245-60.

Herndon JM, Hoisington RD, Whiteside M. Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. J Geog Environ Earth Sci Intn. 2018;14(2):1-11.

Herndon JM, Williams DD, Whiteside M. Previously unrecognized primary factors in the demise of endangered torrey pines: A microcosm of global forest die-offs. J Geog Environ Earth Sci Intn. 2018;16(4):1-14.

Whiteside M, Herndon JM. Coal fly ash aerosol: Risk factor for lung cancer. Journal of Advances in Medicine and Medical Research. 2018;25(4):1-10.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for neuro-degenerative disease. Journal of Advances in Medicine and Medical Research. 2018;25(10):1-11.

Whiteside M, Herndon JM. Aerosolized coal fly ash: Risk factor for COPD and respiratory disease. Journal of Advances in Medicine and Medical Research. 2018;26(7):1-13.

Whiteside M, Herndon JM. Previously unacknowledged potential factors in catastrophic bee and insect die-off arising from coal fly ash geoengineering Asian J Biol. 2018;6(4):1-13.

Whiteside M, Herndon JM. Aerosolized coal fly ash: A previously unrecognized primary factor in the catastrophic global demise of bird populations and species. Asian J Biol. 2018;6(4):1-13.

Whiteside M, Herndon JM. role of aerosolized coal fly ash in the global plankton imbalance: Case of florida's toxic algae crisis. Asian Journal of Biology. 2019;8(2):1-24.

Cao HX, Mitchell J, Lavery J. Simulated diurnal range and variability of surface temperature in a global climate model for present and doubled C02 climates. Journal of Climate. 1992;5(9):920-43.

Kukla G, Karl TR. Nighttime warming and the greenhouse effect. Environmental Science & Technology. 1993;27(8):1468-74.

Qu M, Wan J, Hao X. Analysis of diurnal air temperature range change in the continental United States. Weather and Climate Extremes. 2014;4:86-95.

Roderick ML, Farquhar GD. The cause of decreased pan evaporation over the past 50 years. Science. 2002;298(5597):1410-1.

Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, et al. Maximum and minimum temperature trends for the globe. Science. 1997; 277(5324):364-7.

Dai A, Trenberth KE, Karl TR. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. Journal of Climate. 1999;12(8):2451-73.

Roy SS, Balling RC. Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophysical Research Letters. 2005;32(12).

Peralta‐Hernandez AR, Balling Jr RC, Barba‐Martinez LR. Analysis of near‐surface diurnal temperature variations and trends in southern Mexico. International Journal of Climatology: A Journal of the Royal Meteorological Society. 2009;29(2):205-9.

Gottschalk B. Global surface temperature trends and the effect of World War II: a parametric analysis (long version). arXiv:170306511.

Gottschalk B. Global surface temperature trends and the effect of World War II. arXiv:170309281.

Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annual review of earth and planetary sciences. 2009;37:117-34.

Bastos A, Ciais P, Barichivich J, Bopp L, Brovkin V, Gasser T, et al. Re-evaluating the 1940s CO2 plateau. Biogeosciences. 2016;13:4877-97.

Müller J. Atmospheric residence time of carbonaceous particles and particulate PAH-compounds. Science of the Total Environment. 1984;36:339-46.

Rutledge D. Estimating long-term world coal production with logit and probit transforms. International Journal of Coal Geology. 2011;85(1):23-33.
(Accessed July 27, 2019)

Maggio G, Cacciola G. When will oil, natural gas, and coal peak? Fuel. 2012; 98:111-23.

McNeill JR. Something new under the sun: An environmental history of the twentieth-century world (the global century series): WW Norton & Company; 2001.

Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science. 2001; 294(5549):2119-24.

Roberts PH, King EM. On the genesis of the Earth's magnetism. Reports on Progress in Physics. 2013;76(9):096801.

Huguet L, Amit H, Alboussière T. Geomagnetic dipole changes and upwelling/downwelling at the top of the Earth’s core. Frontiers in Earth Science. 2018;6:170.

Glatzmaier GA. Geodynamo simulations - How realistic are they? Ann RevEarth Planet Sci. 2002;30:237-57.

Guervilly C, Cardin P, Schaeffer N. Turbulent convective length scale in planetary cores. Nature. 2019;570(7761): 368.

Gerardi G, Ribe NM, Tackley PJ. Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach. Earth and Planetary Science Letters. 2019;515:47-57.

Nakagawa T, Iwamori H. On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection. Comptes Rendus Geoscience. 2019;351(2-3):197-208.

Herndon JM. Nuclear georeactor generation of the earth's geomagnetic field. Curr Sci. 2007;93(11):1485-7.

Herndon JM. Nature of planetary matter and magnetic field generation in the solar system. Curr Sci. 2009;96(8):1033-9.

Herndon JM. Uniqueness of Herndon's Georeactor: Energy Source and Production Mechanism for Earth's Magnetic Field. arXiv: 09014509; 2009.

Emanuel KA, Živković-Rothman M. Development and evaluation of a convection scheme for use in climate models. Journal of the Atmospheric Sciences. 1999;56(11):1766-82.

Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, et al. Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bulletin of the American Meteorological Society. 2009; 90(3):325-40.

Chollet JP, Lesieur M. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. Journal of the Atmospheric Sciences. 1981;38(12):2747-57.

Ogura Y. The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. Journal of the Atmospheric Sciences. 1963;20(5):407- 24.

Herring JR. Investigation of problems in thermal convection: rigid boundaries. Journal of the Atmospheric Sciences. 1964;21(3):277-90.

Chandrasekhar S. Thermal Convection. Proc Amer Acad Arts Sci. 1957;86(4):323-39.
(Accessed July 27, 2019)

DuBay SG, Fuldner CC. Bird specimens track 135 years of atmospheric black carbon and environmental policy. Proceedings of the National Academy of Sciences. 2017;114(43):11321-6.

Fehler M, Chouet B. Operation of a digital seismic network on Mount St. Helens volcano and observations of long period seismic events that originate under the volcano. Geophysical Research Letters. 1982;9(9):1017-20.

Mass C, Robock A. The short-term influence of the Mount St. Helens volcanic eruption on surface temperature in the Northwest United States. Monthly Weather Review. 1982;110(6):614-22.

Kinnison DE, Grant KE, Connell PS, Rotman DA, Wuebbles DJ. The chemical and radiative effects of the Mount Pinatubo eruption. Journal of Geophysical Research: Atmospheres. 1994;99(D12): 25705-31.

McCormick MP, Thomason LW, Trepte CR. Atmospheric effects of the Mt Pinatubo eruption. Nature. 1995; 373(6513):399.

Talukdar S, Venkat Ratnam M, Ravikiran V, Chakraborty R. Influence of black carbon aerosol on the atmospheric instability. Journal of Geophysical Research: Atmospheres.

Landsberg HE. The Urban Climate, Volume 28. Academic Press; 1981.

Roth M, Oke T, Emery W. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing. 1989;10(11):1699-720.

Hua L, Ma Z, Guo W. The impact of urbanization on air temperature across China. Theoretical and Applied Climato-logy. 2008;93(3-4):179-94.

Alcoforado MJ, Andrade H. Global warming and the urban heat island. Urban ecology: Springer. 2008;249-62.

Walsh JJ, Steidinger KA. Saharan dust and Florida red tides: The cyanophyte connection. Journal of Geophysical Research: Oceans. 2001;106(C6):11597-612.

Wang R, Balkanski Y, Boucher O, Bopp L, Chappell A, Ciais P, et al. Sources, transport and deposition of iron in the global atmosphere. Atmospheric Chemistry and Physics. 2015;15(11):6247-70.

Wells M, Mayer L, Guillard R. Evaluation of iron as a triggering factor for red tide blooms. Marine ecology progress series. 1991;93-102.

Wong S, Dessler AE. Suppression of deep convection over the tropical north atlantic by the saharan air layer. Geophysical research Letters. 2005;32(9).

Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Nat Acad Sci. 2004;101(2):423-8.

Qian Y, Yasunari TJ, Doherty SJ, Flanner MG, Lau WK, Ming J, et al. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences. 2015;32(1):64-91.

Herndon JM. Evidence of variable Earth-heat production, global non-anthropogenic climate change, and geoengineered global warming and polar melting. J Geog Environ Earth Sci Intn. 2017;10(1):16.

Wu GM, Cong ZY, Kang SC, Kawamura K, Fu PQ, Zhang YL, et al. Brown carbon in the cryosphere: Current knowledge and perspective. Advances in Climate Change Research. 2016;7(1-2):82-9.

Zhang Y, Kang S, Sprenger M, Cong Z, Gao T, Li C, et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere. 2018;12(2): 413-31.

Delany A, Shedlovsky J, Pollock W. Stratospheric aerosol: The contribution from the troposphere. Journal of Geophysical Research. 1974;79(36):5646-50.

Fromm MD, Servranckx R. Transport of forest fire smoke above the tropopause by supercell convection. Geophysical Research Letters. 2003;30(10).

Yu P, Rosenlof KH, Liu S, Telg H, Thornberry TD, Rollins AW, et al. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proceedings of the National Academy of Sciences. 2017; 114(27):6972-7.

Pueschel R, Boering K, Verma S, Howard S, Ferry G, Goodman J, et al. Soot aerosol in the lower stratosphere: Pole‐to‐pole variability and contributions by aircraft. Journal of Geophysical Research: Atmospheres. 1997;102(D11):13113-8.

Rietmeijer FJ. A model for tropical‐ extratropical transport of volcanic ash in the lower stratosphere. Geophysical Research Letters. 1993;20(10):951-4.

Gudiksen PH, Fairhall A, Reed RJ. Roles of mean meridional circulation and eddy diffusion in the transport of trace substances in the lower stratosphere. Journal of Geophysical Research. 1968; 73(14):4461-73.

Hofmann DJ, Solomon S. Ozone destruction through heterogeneous chemistry following the eruption of El Chichon. Journal of Geophysical Research: Atmospheres. 1989;94(D4): 5029-41.

National Research Council. Trace-element Geochemistry of Coal Resource Development Related to Environmental Quality and Health: National Academy Press; 1980.
Available: (Accessed July 27, 2019)

Herndon JM, Whiteside M. Geoengineering: The deadly new global “Miasma”. Journal of Advances in Medicine and Medical Research. 2019;29(12):1-8.