Petrology and Geochemistry of Hama Koussou Dolerite Dyke Swarms (North Cameroon, Central Africa)

Main Article Content

Fagny Mefire Aminatou
Bardintzeff Jacques-Marie
Nkouandou Oumarou Faarouk
Lika Gbeleng Thomas d’Aquin
Ngougoure Mouansie Samira

Abstract

The Pan African granitoid basement of Hama Koussou Cretaceous half basin in North Cameroun (Central Africa) is transected by near N-S, NE-SW and ENE-WSW giant doleritic dykes trending along the same Pan African directions. Hama Koussou dolerites are compliant with the regional distension that occurred after the Pan African basement consolidation prior to the development of West and Central African Rift System at Late Jurassic-Early Cretaceous times. Studied lavas are composed of large clinopyroxene oïkocrysts, plagioclase and alkali feldspar laths and oxides phenocrysts exhibiting ophitic, sub-ophitic and intercertal textures. Microprobe chemical analyses carry out on the main mineral phases show that clinopyroxenes are diopside and augite, plagioclases are labradorite, andesine, oligoclase and albite and alkali feldspars are mainly sanidine with a few percent of orthoclase. ICP-MS and ICP-AES geochemical analyses of Hama Koussou lavas exhibit basalt, basaltic trachyandesite and trachyandesite compositions of continental tholeiite features. Tholeiite basalts of Hama Koussou are the results of high partial melting of E-MORB mantle source of spinel lherzolite composition, located at 65-55 km depth. More evolved tholeiite lavas of Hama Koussou basin are the products of tholeiite basalt differentiation trough assimilation and fractional crystallization coupled with fluids circulation.

Keywords:
Dolerite, dyke swarm, continental tholeiite, Pan African, Hama Koussou, Cameroon, Central Africa.

Article Details

How to Cite
Aminatou, F. M., Jacques-Marie, B., Faarouk, N. O., d’Aquin, L. G. T., & Samira, N. M. (2019). Petrology and Geochemistry of Hama Koussou Dolerite Dyke Swarms (North Cameroon, Central Africa). Journal of Geography, Environment and Earth Science International, 23(3), 1-19. https://doi.org/10.9734/jgeesi/2019/v23i330170
Section
Original Research Article

References

Maurin JC, Guiraud R. Relationships between tectonics and sedimentation in the Barremo-Aptian intra- continental basins of Northern Cameroon. In: CA Kogbe and J. Lang (Editors), African Continental Phanerozoic Sediments. Journal of African Earth Sciences. 1990;10(1/2):331-340.

Cratchley CR, Louis P, Ajakaiye DE. Geophysical and geological evidence for the Benue-Chad Basin Cretaceous rift valley system and its tectonic implications. Journal of African Earth Sciences. 1984; 2(2):141-150.

Genik GJ. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics.1992;213:169-185.

Fairhead JD. Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean – The role of the West and Central African Rift system in Nigeria and Cameroon and its tectonic interpretation. Tectonophysics. 1988;143:141-159.

Binks RM, Fairhead JD. A plate tectonic setting for Mesozoic rifts of west and Central Africa. In: P.A. Ziegler (Editor), Geodynamics of Rifting, Volume II. Case History Studies on Rifts: North and South America and Africa. Tectonophysics. 1992;213:141-151.

Kröner, A., Stern, R.J. Pan-African Orogeny. Encyclopedia of Geology.2004;1:1-12.

Toteu, S.F., Penaye, J, Poudjom Djomani, Y. Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences. 2004; 41(1):73-85.

Maurin JC, Guiraud R. Basement control in the development of the Early Cretaceous West and Central African Rift System. Tectonophysics. 1993;228:81-95.

Ntsama Atangana J. Magnétostratigraphie et sédimentologie des formations crétacées des bassins sédimentaires d'Hamakoussou et du Mayo Oulo-Léré au Nord-Cameroun (Fossé de la Bénoué). Thèse Terre solide et enveloppes superficielles, Université de Poitiers. 2013; 211.

Nkouandou OF, Ngounouno I, Déruelle B. Geochemistry of recent basaltic lavas from the north and east of Ngaoundéré zones (Cameroon, Adamawa Plateau, Central Africa): petrogenesis and the nature of the source. International Journal of Biological and Chemical Sciences. 2010;4:984-1003.

Pouchou JL, Pichoir F. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinriche, D.E. (ed) Electron Probe Quantification. Plenum Press, New York. 1991;31-75.

Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G. Nomenclature of pyroxenes. Mineralogical Magazine. 1988;52:535-550.

Le Maitre, RW. Igneous Rocks: A classification and glossary of terms. Recommendations of the IUGS Sub-Commission on the Systematics of Igneous Rocks, 2nd edition. Cambridge University Press, Cambridge; 2002.

Carmichael ISE, Turner FJ, Verhoogen J. Igneous petrology. McGraw-Hill, New York; 1974.

Miyashiro A. Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology. 1978;66:91-104.

Cabanis B, Thiéblemont D. La discrimination des tholéiites continentales et des basaltes arrière-arc. Proposition d’un nouveau diagramme Th-Tbx3-Tax2. Bulletin de la Société Géologique de France. 1988;8(6):927-935.

Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l’Académie des Sciences, Paris. 1989;309:2023-2029.

Pearce TH, Gorman BE, Birkett TC. The TiO2–K2O–P2O5 diagram: A method of discriminating between oceanic and non-oceanic basalts. Earth and Planetary Science Letters. 1975;24:419-426.

Wang K, Plank T, Walker JD, Smith EI. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research. 2002;107:ECV5-1-ECV 5-21.

Pearce JA. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos. 2008;100:14-48.

Pearce JA, Cann JR. Tectonic setting of basic volcanic rocks determined using trace element analyses, Earth and Planetary Science Letters. 1973;19:290-300.

Campbell IH. The difference between oceanic and continental tholeiites: A fluid dynamic explanation. Contribution to Mineralogy and Petrology. 1985;91:37- 43.

Holm PE. The geochemical fingerprints of different tectonomagmatic environments using hygromagmatophile element abundances of tholeiitic basalts and basaltic andesites. Chemical Geology. 1985;51:303-323.

Bryan SE, Ernst RE. Revised definition of large igneous provinces (LIPs). Earth Science Reviews. 2008;86:175-202.

Cornacchia M, Dars R. Un trait structural majeur du continent Africain. Les linéaments Centrafricains, du Cameroun au Golfe d’Aden. Bulletin de la Société Géologique de France. 1983;7(XXV):1:101-109.

Moreau C, Regnoult JM, Déruelle B, Robineau B. A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics. 1987;139:317-334.

Guiraud R, Maurin JC. Early cretaceous rifts of western and Central Africa: An overview. In: P.A. Ziegler: (Editor). Geodynamics of Rifting, Volume II. Case 1 history studies on Rifts: North and South America, Africa-Arabia. Tectonophysics. 1992;213:153-368.

Benkhelil J, Mascle J, Guiraud M. Sedimentary and structural characteristics of the cretaceous along the Côte d’Ivoire-Ghana transform margin and in the Benue trough: A comparison. In Mascle, J., Lohmann, G.P., and Moullade, M. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results. 1998;159.

McDonough WF, Sun SS. The composition of the Earth. Chemical Geology. 1995;120:223-253.

Condie KC. Source of proterozoic mafic dykes swarms: Constraints from Th/Ta and La/Yb ratios. Precambrian Research. 1997;81:3-14.

Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts: Implications for the mantle composition and processes. In: Saunders, A. D., Norry, M. J. IEds.), Magmatism in the Ocean Basins. Geolgical Society London Publication. 1989;42:313-345.

Taylor SR, McLennan SM. The continental crust: It’s composition and evolution. Blackwell, Oxford, UK. 1985;312.

Marzoli A, Chiaradia M, Jourdan F, Bussy F. Parental magmas and crustal contamination of continental tholeiitic basalts from the Central Atlantic magmatic province as revealed by mineral major and trace elements and Sr isotopes. Goldschmidt Conference Abstracts; 2006.

Cadman AC, Tarney J, Bridgwater D, Mengel F, Whitehouse MJ, Windley BF. The petrogenesis of the Kangâmiut dyke swarm, W. Greenland. Precambrian Research. 2001;105:183-203.

Scarrow JH, Cox KG. Basalts generated by decompressive adiabatic melting of a mantle plume: A case study from the Isle of Skye, NW Scotland, Journal of Petrology. 1995;36:3-22.

Poudjom Djomani YH, Diament M, Wilson M. Lithospheric structure across the Adamawa plateau (Cameroon) from gravity studies. Tectonophysics. 1997;273(3-4):317-328.

Dupuy C, Dostal J. Trace element geochemistry of some continental tholeiites. Earth and Planetary Science Letters. 1984;67:61-69.

Marsh JS. Geochemical constraints on coupled assimilation and fractional crystallization involving upper crustal compositions and continental tholeiitic magma. Earth and Planetary Science Letters. 1989;92:70-80.