Analysis of the SWAT (Soil and Water Assessment Tool) Semi-distributed Model Input Data for the Hydrological Simulation of the Lobo Water Reservoir (Central West of Côte d'Ivoire)

Main Article Content

T. J. J. Koua
K. H. Kouassi
K. A. Anoh

Abstract

This study aims to analyze the input data of the semi-distributed SWAT model that can be used as a hydrological study of the Lobo water reservoir. The adopted approach includes two major steps: The input data estimation and the watershed configuration. The estimation of input data consists in the collection and calculation of input data necessary for the watershed configuration. The input data collected and estimated were a digital elevation model (DEM), a soil map, soil physico-chemical parameters (grain size, K erodibility coefficient, exchangeable anions, soil density, organic carbon, soil electrical conductivity), a land cover map, information on agricultural practices and daily climate data (Temperature, Rainfall, Sunshine, Wind Speed ​​and Relative Humidity). The watershed configuration consisted of the extraction of watershed boundaries and watershed network, the integration of data, the calculation of hydrological response units (HRU) and the watershed configuration. The SWAT model permitted to extract a single type of soil for Lobo water reservoir watershed. The watershed has a dense drainage system which means that the area is heavily drained. The degraded forest occupies 37% of the watershed followed by agricultural land (30% of the territory). 213 HRU from 39 sub-watersheds were also obtained. These data are an indispensable tool for the hydrological simulation of the Lobo reservoir.

Keywords:
SWAT, Lobo River, agro-hydrological modeling, Daloa, water reservoir, HRU

Article Details

How to Cite
Koua, T. J. J., Kouassi, K. H., & Anoh, K. A. (2019). Analysis of the SWAT (Soil and Water Assessment Tool) Semi-distributed Model Input Data for the Hydrological Simulation of the Lobo Water Reservoir (Central West of Côte d’Ivoire). Journal of Geography, Environment and Earth Science International, 23(4), 1-20. https://doi.org/10.9734/jgeesi/2019/v23i430182
Section
Original Research Article

References

Rissons M, Bocquillon C. Un modèle hydrologique spatialisé SIG, base de données et mécanismes hydrologiques : Application of Geographic Information Systems in Hydrology and Water Resources Management. Proceedings of the Vienna Conference. 1996; IAHS Publ. no. 235. French

Villeneuve JP, Hubert P, Mailhot A, Rousseau AN. La modélisation hydrologique et la gestion de l'eau. Revue des sciences de l'eau. 1998;11:19-39. French

Bewket W, Sterk G. Dynamics in land cover and its effect on stream flow in Chemoga watershed, blue Nile basin, Ethiopia. Hydrological Process. 2005;19: 445-458.

Dupont J, Smitz J, Rousseau AN, Mailhot A, Gangbazo G. Utilisation des outils numériques d’aide à la décision pour la gestion de l’eau. Revue des sciences de l’eau. numéro spécial: 1998;5-18. French

Kouamé K, Kouamé A, Kouassi KFA, Oularé S, Adon C-RG, Bernier M. Mise en place d’une base de données pour une modélisation hydrologique distribuée du bassin versant du Bandama (Côte d’Ivoire) : apport d’un modèle numérique d’altitude, de la télédétection et du SIG Physitel. Afrique Science. 2011;7(2):94-114. French

Chocat B. Techniques alternatives, Assainissement, Bassin de retenue. Encyclopédie de l’hydrologie Urbaine et de l’assainissement. Ed.Tec et Doc, Lavoisier; 1997. French

Refsgaard JC. Parameterization, calibration, and validation of distributed hydrological models. Journal of Hydrology. 1997;198(1-4):69-97.

Refsgaard JC, Storm B. Construction, calibration, and validation of hydrological models. In: Abbot MB, Refsgaard JC, editors . Distributed Hydrologic Modeling. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1996.

Wischmeier WH, Smith DD. Predicting Rainfall Erosion Losses. Agriculture Handbook 537, United States Department of Agriculture, Science and Education Administration; 1978.

Kouamé KF, Bernier M, Fortin JP, Lefebre R, Biemi, J. Application du modèle hydrologique distribué ‘HYDROTEL’ à la simulation des écoulements des eaux en milieu tropical humide : cas du bassin versant du N’zo en Côte d’Ivoire. 12è congrès de l’AQT, Chicoutimi; 2005. French

Wagena MB, Collick AS, Ross AC, Najjar RG, Rau B, Sommerlot AR, et al. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. Science of Total Environment. 2018;1443-1454.

Bai J, Shen Z, Yan T. Effectiveness of vegetative filter strips in abating fecal coliform based on modified soil and water assessment tool. International Journal of Environmental Science and Technology. 2016;13:1723-1730.

Koua TJ, Jourda JP, Kouamé KJ, Anoh KA, N’dri WK, Lazar G, et al. Effectivness of soil and water assessment tool model to simulate water flow in a large agricultural complex watershed: case of Buyo lake basin, West of Côte d’Ivoire. Environmental Engineering and Management Journal. 2014;13:735-1742.
Available:https://doi.org/10.30638/eemj.2014.193

Koua TJ, Jourda JP, Kouame KJ, Anoh KA, Balin D, Lane S. Potential climate change impacts on water resources in the Buyo Lake Basin (Southwest of Ivory Coast). International Journal of Innovation and Applied Studies. 2014;8:1094-1111.

Anoh K, Koua T, Eblin S, Kouamé K, Jourda J. Modelling Freshwater Availability Using SWAT Model at a Catchment-Scale in Ivory Coast. Journal of Geoscience and Environment Protection. 2017;5:70-83. DOI:10.4236/gep.2017.513005

Avenard JM. Aspect de la géomorphologie. In : Mémoire ORSTOM. Milieu naturel de la Cote d’Ivoire. Paris, France; 1971. French

Brou Y. Climat, mutations socio-économiques et paysages en Côte d’Ivoire. Mémoire de synthèse présentés en vue de l’obtention de l’Habilitation à Diriger des Recherches. Université des Sciences et Technologies de Lille. 2005; 106. French

Nachtergaele F, Velthuizen HV, Verest L. Harmonized world soil database version1.1. 2009;
[Accessed on october, 2012]
Available:http://www.fao.org/fileadmin/templates/nr/documents/HWSD/HWSD_Documentation.pdf.

Jenson SK, Domingue JO. Extracting topographic structures from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing. 1998; 54(11):1593–1600.

Charleux-Demargne J. Qualité des Modèles Numériques de Terrain pour l’hydrologie. Application à la caractérisation du régime de crue des bassins versants. Thèse ENSG. Université de Marne la Vallée. 2004;350. French

FAO. The state of food and agriculture. Report. 1998;389.

Puech C. Détermination des états de surface par télédétection pour caractériser les écoulements des petits bassins versants. Application à des bassins en zone méditerranéenne et en zone tropicale sèche. Thèse de Doctorat, Université Joseph Fourier. 1993;230. French

Arnold JG, Kiniry JR, Srinivasan, Williams RJR, Haney EB, Neitsch SL. Soil and Water Assessment Tool, Input/ Output File documentation version 2009; 2011. Available:http://swat.tamu.edu/media/19754/swat-io-2009.pdf.

Maïga A, Denyigba K. Eutrophication of small dams in West Africa. The case of Lobo dam (Côte d’Ivoire) in: 4th interregional conference on Environment and water. Fortalega (Brasil). 2001;27-31.

N’go AY, Kouadio AZ, Déguy JPA, Hien AS, Goula ABT, Savané I. Influence de la dynamique de l’occupation du sol sur la quantité de perte de sol au Sud du bassin versant du Sassandra (Côte d’Ivoire), International Journal of Advanced Research. 2018;6(4):830-838.

Goé B. Evaluation de l’impact des changements climatiques sur les ressources en eau du bassin versant de la Lobo à Nibéhibé: Centre-Ouest de la Côte d’Ivoire. Mémoire de Master en Génie de l’Eau et Environnement, Université Jean Lorougnon Guédé, Côte d’Ivoire. 2019;50. French

Quentin E. Optimisation des paramètres de la procédure géomatique d'extraction des caractéristiques hydrologiques d'un bassin versant à partir d'un modèle numérique d'altitude. Thèse de doctorat. Université de Sherbrooke. 1999;127. French

Veregin H. The Effects of Vertical Error in Digital Elevation Models on the determination of flow-path Direction. Cartography and Geographic lnformation Systems. 1997;24(2):67-79.

Jacqueminet C, Kermadi S, Michel K, Béal D, Branger F, Jankowsky S, Braud I. Land cover mapping using aerial and VHR satellite images for distributed hydrological modelling of periurban catchments: Application to the yzeron catchment (lyon, france). Journal of Hydrology. 2013;485: 68-83.

Villarreal M L, Norman LM, Wallace CSA., Van Riper C. A multitemporal (1979-2009) land use/land-cover dataset of the binational santa cruz watershed. US Geological Survey, Reston, Virginia. Technical report. 2011;113.

Cotter AS, Chaubey I, Costello TA, Soerens TS, Nelson MA. Water quality model output uncertainty as affected by spatial resolution of input data. Journal of the American Water Resources Association. 2003;39(4):977-986.

Bormann N, Breuer, Groff L, Huisman TJ, Croke B. Assessing the impact of land use change on hydrology by ensemble modelling: Model sensitivity to data aggregation and spatial (re-) distribution. Advances in Water Resources. 2009;32(2): 171-192.

Branger F, Kermadi S, Jacqueminet C, Michel K, Labbas M, Krause P, Kralisch S, Braud I. Assessment of the influence of land use data on the water balance components of a peri-urban catchment using a distributed modelling approach. Journal of Hydrology. 2013;505:312-325.

Fortin JP, Turcotte R, Massicotte S, Moussa R, Fitzback J, Villeneuve JP. A distributed watershed model compatible with remote sensing and GIS data: Application to Chaudière watershed. Journal of Hydrologic Engineering. 2001; 6(2):100-108.

Ambroise B. La dynamique du cycle de l’eau dans un bassin versant : processus, facteurs, modèles. Ecole Polytechnique Fédérale de Lausanne, HGA Bucarest. 1999;206. French

Indarto K. Découpages spatiaux et conséquences sur le bilan hydrologique. Thèse de Doctorat, Université de Montpellier. 2002;258. French